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The response of a turbulent boundary layer to a short 
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Extensive measurements were made of the response of a high-Reynolds-number 
turbulent boundary layer to a short length (about three boundary-layer thicknesses) 
of surface roughness. The measurements include the mean velocity, all the Reynolds 
streses as well as all the triple products occurring in the Reynolds-stress transport 
equations. At the last measurement station, 55 boundary-layer thicknesses from the 
roughness, the boundary layer still had not relaxed to the universal smooth-wall 
structure. Comparison of the measurements with a calculation of the flow suggests the 
major requirement for improving the agreement is a more sophisticated treatment of 
the turbulent-diffusion process. 

1. Introduction 
The wall region of a turbulent boundary layer is one of the simplest regions of 

turbulent shear flow to calculate because the equilibrium structure, from which the 
logarithmic mean-velocity profile follows, is determined almost entirely by the Eocal 
processes of turbulent-energy production and dissipation (Townsend 1961). Present- 
day calculation methods are reasonably capable of describing the response of the wall 
region to a large step change in surface roughness, that is from one equilibrium flow 
to another, even though the flow immediately following the step is not in energy equi- 
librium (Wood 1978). 

The outer region ( g / & z  0.2, where 6 is the boundary-layer thickness) is more 
complex, as its time scales are much larger than in the wall region owing to the 
importance of non-local effects, such as the diffusion and advection of turbulent 
energy. Most calculation methods generally succeed only in regions far removed 
from any strong perturbation, hereinafter called a self-preserving flow to emphasize 
the difference from equilibrium as defined above; the latter is a subset of the former. 
Antonia & Luxton (1971a, 1972) found that the whole flow had adjusted to a large 
smooth-to-rough step (hereinafter denoted S -+ R) by a streamwise distance of about 
lOS,,, where So is the initial boundary-layer thickness defined in figure 1. However, 
recovery following a rough-to-smooth step ( R  -+ 8)* was far from complete by their 
last measuring station, %/So = 16. 

Australia. 

transition from one self-preserving flow to another. 

t Present address : Department of Mechanical Engineering, University of Newcastle, N.S.W., 

$ We use the abbreviations S -+ R and R --f S with the implicat,ion that they describe the 
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FIGURE 1. Schematic diagram of the flow. 

The major aim of the present equipment is to document further the recovery of the 
outer layer to a change in the wall boundary condition. Since the response length of 
the outer layer is roughly 106, (Smits, Young & Bradshaw 1979) we decided to measure 
the flow following an ‘impulse’ of surface roughness whose length was arbitrarily set 
a t  around 36,. This geometry had the added advantage that the wall-region flow was 
not in equilibrium a t  the end of the roughness strip, providing a more difficult test 
case for calculation methods than previous, single-step experiments. The experiment 
is an idealization of important micrometeorological flows and also those in which 
corrosion or erosion alter the surface over a short distance as might occur in river beds 
or on turbine blades. 

The experiment is shown schematically in figure 1. A fully developed turbulent 
boundary layer has formed on the upstream surface. At  x = 0 the surface roughness 
changes abruptly by an amount that is usually measured as M = Inx,,/z,,; the 
roughness scale zo is obtained by writing the logarithmic law as U/U, = ~ - 1 l n  (y/z,), 
where U is the mean streamwise velocity, U, is the friction velocity and K is the K$rm&n 
constant ( N 0-41, the value that has been used here throughout the present study). 
The flow adjusts by forming an internal layer whose height Sil denotes the outward 
extent of the velocity field affected by the new surface, since streamline displacement 
effects are small (see e.g. Antonia & Luxton ( 1 9 7 1 ~ )  1972)). At I ,  = 150mm (2 :  36,) 
a second step change in roughness occurs before the flow has fully adjusted to the new 
surface. A second internal layer with height Si, is formed under the high mean-velocity 
gradient aU/ay caused by the first step. 

Two important problems occur in measuring the flow over a rough surface. Firstly, 
it is difficult to estimate the wall shear stress accurately, and, secondly, the origin for 
the normal co-ordinate y is not known u priori. These problems increase the un- 
certainty of fitting the mean-velocity profiles to the logarithmic law, even for fully 
developed flow. Andreopoulos & Bradshaw (1981) found that roughness effects on the 
structure of a fully developed boundary layer are small when normalized by U, and 
6, although the triple products appearing in the turbulent-energy equation are altered 
spectacularly up to ten physical roughness heights from the surface. 

The experimental results include all the measurable terms appearing in the 
Reynolds-stress transport equations. They leave no doubt that the flow has not 
recovered to its usual smooth-wall self-preserving form a t  the last measurement 
station, x/S, = 55. 

The measurement techniques are described briefly in $2, while $ 3  presents and 
discusses a selection of the results; more details are available in Andreopoulos (1979) 
and Andreopoulos & Woad (1980), where the hot-wire results are tabulated. Calcu- 
lations made using the Bradshaw, Ferriss & Atwell (1 967) method are compared with 
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the measurements in $ 4 .  It is suggested that the main requirement for improving the 
accuracy of calculations in general is an improved modelling of t,he t,riple-product 
terms in the Reynolds-stress equations. 

2. Experimental techniques and data reduction 
The measurements were made in the closed-circuit wind tunnel a t  the Sonder- 

forschungsbereich 80, which has a 6m long by 1.5 m internal diameter octagonally 
shaped working section, with an adjustable roof set to give a zero pressure gradient. 
The free-stream longitudinal intensity was about 0.06 yo a t  14m s-1; further details 
of the tunnel's performance are given by Ermshaus & Naudascher (1977). A 6 m long 
flat plate was installed 30 cm from the floor. A flap installed a t  the trailing edge was 
adjusted to give zero circulation around th6 plate. To avoid low-Reynolds-number 
effects, and in the naive belief that there would remain sufficient streamwise distance 
for complete recovery, a sandpaper strip of 150 mm was installed about 2.95 m from 
the leading edge. The roughness was not closely packed and had a maximum grain 
size of about 2 mm with a backing thickness of 1 mm. The plate was machined to 
accept the strip with the top of the backing just below the plate surface, so the 
roughness was slightly upstanding. 

At constant height within the boundary layer the mean velocity was uniform over 
the central 85 % of the plate a t  3 m from the leading edge. Similarly, $was effectively 
invariant with spanwise position over 75 yo of the plate width a t  4.5 m from the leading 
edge. 

Both the mean velocity and turbulence structure of the boundary layer upstream 
of the step were found to be close to those for a standard smooth-wall, zero-pressure- 
gradient layer (Andreopoulos 1980). Low-Reynolds-number effects are negligible 
(table 1)  and the free-stream velocity Ue was always maintained to within 2 0.5 % 
of 14.75m s-l. 

The streamwise mean velocity was measured with a round-total head tube of 1 mm 
outside diameter connected bo a MKS Baratron Type 144 pressure transducer. 
Skin-friction measurements were made on the smooth wall using Preston tubes of 
1 mm and 2 mm outside diameter and Patel's (1965) calibration. 

DISA 55MO 1 constant-temperature anemometers were used for all the turbulence 
measurements. DISA 55P5 1 X-probes were used mainly, but some simultaneous 
measurements of all three velocity components were obtained using a DISA 55P91 
three-wire probe. After low-pass filtering a t  10 kHz the hot-wire signals were digitized 
a t  a rate of 5 kHz per channel by a Hewlett-Packard 5154C Fourier Analyser, and 
20s of real-time data were recorded on digital tape. The tapes, which are still avail- 
able, were later analysed on the Univac 1108 computer of the University of Karlsruhe. 
The digitization system and the data-reduction program used to evaluate all the 
products up to third order as well as u4, v4 and w4 are described by Andreopoulos 
(1980). The X-probes were calibrated using King's law and a modified version of the 
'cosine law' with the effective yaw angle obtained by calibration in the (x,y)-plane 
((u, v)-plane). To measure u and zu the probe was rotated 90" in the (y, 2)-plane, while 
F v  wtts determined from measurements a t  rt 45" in that  plane. The data-reduction 
program simply inverted the calibrations, so no analogue linearization was necessary. 
The system allowed a large number of profiles to be measured quickly; and subsequent 

- -  
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recalibration of the probes showed virtually no drift from the calibrations for the 
results presented here. The calibration of the three-wire probe and its advantages and 
limitations are discussed in Andreopoulos (1981). The agreement between the X-probe 
and three-wire-probe results was very good and the results are presented in $ 3  
without reference to the probes used. 

3. Results 
3.1. MeanJlozu 

The mean-velocity data are tabulated in Andreopoulos (1979) and the bulk-flow 
parameters are summarized in table 1. Estimates of the skin-friction coefficient CI 
are shown in figure 2 together with the calculations discussed in $4. The Clauser-chart 
values were obtained using the logarithmic law for a rough surface 

u 1 y+e AU - = -In-U,+A--- 
u, K V u7 ’ 

where A is the additive constant in the upstream smooth-wall logarithmic law. The 
error in origin e was found using the method of Perry, Schofield & Joubert (1969) to 
be nearly 1 mm above the smooth surface and independent of x for x < 150mm 
(Andreopoulos 1979); obviously e = 0 for x > 150mm. In  that sense e is expected to 
vary discontinuously at x = 150 mm. The value of the roughness function, or velocity 
shift, AUlU,,  then follows. Since both the Preston tube and Clauser chart depend on 
the applicability of the logarithmic law, and hence on the existence of equilibrium, 
they will be inaccurate close to a step change in roughness. Although there is significant 
disagreement between the results, as was found by Antonia & Luxton (1972) after a 
R + S  step, both methods agree on the trend in ci. In  particular, dci/dx is negative 
only at  the last measuring station. This is a requirement for fully developed flow, 
which must therefore occur after the last measuring station. 

Another estimate of cf comes from the momentum-integral equation cf = 2d6/dx, 
where 8 is the momentum thickness, and pressure-gradient effects are negligible. 
Because of the inevitable scatter, a smooth curve was passed through the results and 
cp determined. Unfortunately, the method is also unreliable near a step where ci has 
large streamwise gradients of both signs, but there is generally good agreement with 
the Clauser-chart values after the second step. 

The reason for the disagreement between the Preston-tube and Clauser-chart values 
of cI is evident from figure 3, which shows the streamwise development of AUIU,. 
Even at  the last measuring station AUIU, has not returned to its equilibrium smooth- 
wall value of zero; the present value of AUIU, N 2.0 is very close to that found by 
Antonia & Luxton (1972) a t  their last station. Since the calibration of the Preston 
tube requires that AUlU, = 0, the disagreement is not surprising, and suggests that 
the Clauser-chart values are more reliable. The slight decrease in cf with decreasing 
outside diameter a t  all x is consistent with the lack of equilibrium in the wall region 
and with the viscous sublayer having its usual form U+ = y+, where U+ = U/U,  and 
y+ = yU,/v; the centre of the 1 mm outside diameter tube is a t  y+ 21 16 for cf = 0.0023. 
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X 

(mm) 
- 100~00 
- 10.00 

0.00 
10.00 
50.00 

100~00 
137-50 
150.00 
176.00 
200.00 
225.00 
250.00 
350.00 
650.00 

1000~00 
1750.00 
2500.00 

S* 
(mm) 
5.829 
6.206 
5.979 
5.476 
5.950 
6.797 
6.305 
6.847 
8.106 
7.607 
7,926 
8-279 
8.267 
8.469 
7.933 
8.792 

10.261 

H 
1.298 
1.299 
1.27 1 
1.273 
1,337 
1.362 
1.358 
1.357 
1.493 
1 4 3 4  
1.432 
1.408 
1.381 
1.341 
1.307 
1.298 
1.297 

0 
(mm) 
4.469 
4.777 
4,665 
4.302 
4.447 
4.990 
4.642 
5.045 
5.465 
5.441 
5.535 
5.877 
5.997 
6.314 
6.065 
6.770 
7.913 

5 
(mm) 
43.753 
44.882 
46.666 
44.412 
46.683 
46.005 
48.566 
50.027 
46.814 
47.673 
48.477 
51.532 
52.900 
55.551 
53.900 
60.165 
74-451 

TABLE 1. Bulk-flow parameters. The largest contributions to 0 comes from values of U / U ,  
around 0.5, as U / U ,  (1 - U / U , )  has maximum value 0.25 a t  U / U ,  = 0.5. The smallest value 
of U / U ,  was greater than 0.5 at y = 0.94 mm; so 0 and S* may not be reliable. 

-200 0 500 1000 1500 2000 2500 
x (mm) 

FIGURE 2. Development of the skin-friction coefficient. Solid line is the calculated development ; 
0, Clauser chart; V , momentum thickness ; , x , Preston tube of 1 and 2 mm outer diameter 
respectively. 
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AU - 0- 
-1000 500 1000 1500 2000 2500 

* *  
x (mm) 

-10- 

FIGURE 3. Development of AU/U, .  

3.2. Growth of the internal layers 

The height of the internal layer(s) was found as the point(s) at  which successive mean 
velocity profiles merged. More precisely, mean longitudinal velocity gradients a U / a x  
were compared with cue/$, where U, is the free-stream velocity, 6 the thickness of the 
outer layer and E some suitably small number. The height of the internal layer is then 
defined as the distance y where 

au cue - < -. ax s 
The value of E must be as small as possible, but certainly greater than that allowed by 
the available accuracy of velocity measurements and the uncertainties involved in 
deducing the longitudinal gradients. Finally, E has been set equal to 0.02, and it was 
found that the growth rate of the internal layer is independent of E for a range of 40 yo 
variation of c. (Hereinafter 6 will be used to denote the dissipation of turbulent 
kinetic energy.) 

The striking difference in the growth rates of S,, and S,, is shown in figure 4, The first 
internal layer reaches the boundary-layer edge a t  about x / J 0  = 13, while even at  the 
last station Si, has hardly penetrated the outer region. 

On largely dimensional grounds, Wood (1980) showed that for single S - t R  and 
R -+ X steps the wall-region behaviour of 6i could be correlated approximately as 

* *  
b 

201 
For the present results 

over nearly all x/S. There appear to be three overlapping regions for the second internal 
layer, given approximately by 

(3.4) 
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0 

I I 

10 20 30 

4 6  
FIGURE 4. Development of the internal-layer thickness. 0,  &,,/a; 0, &,/&. 

The values of xol and xo3 were found by applying the equation for xo from the logarithmic 
law (3.1), 

zo = qexp[-KC+AU/U,), V 

a t  x = 0, where A U / U ,  = 0, and a t  x = 2500mm, where AU/U,  = 2.0. The values 
obtained were xol = 3.43 x iO-3mm and zo3 = 1.74 x 10-3mm. Again using (3.1)’ zo2 
was found to be approximately 0.134mm. It is emphasized that both zo2 and zo3 are 
approximate, since they were not measured under equilibrium conditions. Using 
these values we find lcl;-.,z = -3.67 and M2+3 = 4.34, compared with Antonia & 
Luxton’s (1971a, 1972) values of MS+R = -4.6 and MR-s = 5.8, showing that the 
‘strengths ’ of the perturbations are weaker in the present flow. 

The growth of the first internal layer does not appear to be influenced by the second. 
The exponents in (3.3) and (3.4) agree, while that in (3.5) is close to the value of 0.43 
measured by Antonia & Luxton (1972) over a similar range of x/S. Even though the 
errors in estimating Si are large in the outer layer where the perturbation is weak, (3.6) 
is further indication that the flow has not reached full development by the last station. 

3.3. Turbulence measurements 

Considerable thought was given to the problem of making the turbulence measure- 
ments non-dimensional. It is unlikely that U, is acceptable, because of the lack of 
equilibrium and because of the inaccuracy of estimating U,, a t  least close to the steps. 
However, figure 5 shows that even if U, is factored it is still impossible to collapse the 
shear stress over all y/Sat x = 1750 mm onto the upstream distribution, in agreement 
with the above conclusions about the lack of full development. In the interests of 
safety the results are normalized by U, and 6. 
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0.2 0.4 0.6 0.8 1.0 

Y I 6  

FIGURE 5. Shear-stress profdes scaled by U:. z (mm): n, - 100; 0, 0; a, 1750. 
_ _ _  -, U, increased by 25 yo ; - - - , U,  increased by 20%. 

For x < 150mm 3 (figure 6) and 3 (figure 7) are increased abruptly over their 
smooth-wall values for y < Si, as a result of the sudden increase in aU/ay and hence in 
turbulent-energy production. The shear stress -uV is also increased (figure 8), as its 
production, largelyGaU/ay, rises. The values of Si, and S,, from figure 4 are replotted 
in figure 8. For x c 150 mm, Si, is in reasonable agreement with the value obtained by 
superimposing successive u2, v2 or - UV profiles, as found by Antonia & Luxton (197 1 a). 
The initial rapid rise in the second-order quantities has finished by x = 150mm; 
however, the maximum values of all the second-order quantities a t  x = 175mm are 
between 5 to 7 yo higher than a t  150 mm, as aU/ay has also increased for Si, c y < S,, 
($ is shown in figure 9). This does not occur in the single R-tS measurements of 
Antonia & Luxton (1972). Furthermore, for x = 200mm, and probably for 175mm 
as well, the maxima in the second-order quantities occur significantly outside the 
second internal layer a t  about y/S = 0.11 for x = 200mm and not a t  y = S,, (Si,/S = 

0.075), as would be the case if the flow was a simple superposition of a S + R followed 
quickly by a R -t S step. The Clauser-chart values of Ug are indicated on the vertical 
axes in figure 8, showing that extrapolating - E@ to the wall to estimate U,Z is inherently 
unreliable. Within the second internal layer - TiV is always larger than U,Z. It is _ _  worth 
noting that the 2 results (figure 9) do not support the approximation 3 N &(u2 + v2) 
that has been widely used in the past when only u, v measurements were available. 

The most obvious feature of figure 8 is the outward propagation of the peak in 
- uz), which is not so evident in Antonia & Luxton’s ( I  972) single-step results, since 
their - E profile a t  the R -+ S step had the same shape as the present profile a t  x = 0. 
The present results for x > 150mm are qualitatively very similar to those of Smits 
et al. (1979, figure 10d)  following an ‘impulse’ of convex curvature. They called 
this phenomenon a ‘stress bore’, and noted that it propagates because the large 
negative a( - ?Z)/ay on the free-stream side of the peak decelerates the flow (see their 
equation (l)) ,  hence increasing production and outward propagation. However, 
the detailed mechanics of the bore is a ‘result of turbulent transport and of interaction 
between the turbulence and the mean flow ’, whereas a reasonable description of the 
wall region following a single step can ignore the former mechanism (Wood 1978,1980). 
The stress bore is discussed fupther in $3.5. 

- _  
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1.2 

- 0.8 
U =  
- x 102 
iz 

0.4 

0 
0 0.2 0.4 0.6 0.8 1.2 1.4 

Y l S  
FIGURE 6. Mean-square u-profiles. z (mm): 0, 0; 0, 100; A, 150; +, 175; 

x ,  200; 0, 250; 4, 300; X ,  500; z, 1000; Y, 1750. 

- 
V 2  - x 102 
iz 

1 

0.2 0.4 0.6 0.8 1.2 1.4 

Y I S  

FIGURE 7. Mean-square v-profiles. Symbols as in figure 6. 
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3 

1 

1 

0.5 1 

YI6 
FIGURE 9. Mean-square w-profiles. r (mm), 0 ,  150; +, 175; 0, 200; A, 1750. 

_ _ _ _  line is t (u2+v2)  at r = 1750. 
- _  

- The shear-stress correlation coefficient R,, = - uw/(G)* (;;",S is plotted in figure 10. 
I ts  behaviour outside the first internal layer is unremarkable. For x > 150mm, R,, 
first increases) as - minitially increases more rapidly than 2 and 2, and then decays 
more slowly. Between x = l000mm and 1750mm) -Ti5 remains nearly constant, 
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FIGURE 10. Shear-stress correlation coefficient. Symbols as in figure 9. 
S P  

1 1 

I ‘  I I 1 I 

0.1 0.2 0.3 0.4 0.5 

Y I 6  

FIGURE 11.  Structural paramet,er a,. Symbols as in figure 9. 

while 2 and 3 increase slightly. _The _behaviog of Townsend’s (1961) structural 
parameter a, E - 2uv/q2, where q2 = u2 + z2 + w2, behaves in a similar manner 
(figure 11). At x = 150mm, a, has a maximum value within Si, of 0.32, while a t  
x = 175 mm, the maximum measured value is 0.36. The departures from the value of 
0.30 used in the calculation met,hod of Bradshaw et al. (1967) are not large. 

3.4. Triple products 

The triple products are best described in terms of their contribution to the Reynolds- 
stress transport equations and by the resulting convection velocities for the Reynolds 
stresses. Before doing that, we briefly describe some important ’eatures of the results. 

The measurements of - u3, u2v and 7 are shown in figures 12-14. As expected, the 
large excursions from the fully developed smooth-wall values (at x = 0) are confined 
to y < ail. There, the resulting gradients of z v  and 3 that appear in the turbulent- 
diffusion term for the turbulent energy have large values. For z < 150mm the triple 

- -  



154 J .  Andreopoulos and D .  H .  Wood 

6 I 

I 1 I 

0.2 0.4 0.6 0.8 1.0 1.2 

Y J ~  
FIGURE 12. 2 profiles. Symbols as in figure 6. 

I I 

0.2 0.4 0.6 0.8 1.0 1.2 

FIGURE 13. & profiles. Symbols as in figure 6. 

products peak towards the outer edge of the first internal layer, in substantial agree- 
ment with the finding of Antonia & Luxton (1974) that  the skewness factors of u 
and w (S, E u3/(u2)9) are a t  maxima near y/6,, = 1. They attributed this result to the 

- -  
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4- 
0 

I I I 

0.2 0.4 0.6 0.8 1.0 1.2 

FIGURE 14. aprofiles. Symbols as in figure 6. 

flow 'switching ' between the more intense rough-wall turbulence and the external 
flow. But this behaviour is also necessary for & and 3, from the constraint on 
turbulent diffusion within S,, discussed in Q 3.5. 

Close to the wall, -2 develops a sharp negative peak for x > 150 mm similar to that 
found by Andreopoulos & Bradshaw (1980) for fully developed flow over both rough 
and smooth walls. I n  figure 12 the peak decays with x, and for x > 150 mm, - u3 is 
always positive. This difference from fully developed behaviour for large x also occurs 
for &.t Andreopoulos & Bradshaw (1980) found a negative peak in 3 close to the 
wall only for their fully developed rough flow. The present results show a negative 
region for y < Si, and x > 250mm, which has decayed only a t  the last station. The 
resulting large @/lay contributes significantly to the turbulent diffusion. 

Antonia & Luxton's (1972) results for p22), which they assumed equal to $(ZL'+ + v3) 
since zc'22, was not measured, are always positive, whereas both & and 3 are negative 
together a t  x = 250 and 300 mm. 

- 

_ -  

3.5. Reynolds-stress transport equations 

Figures 15-17 show the balance of the terms in the turbulent-energy equation 

shear- normal- 

production production 
advection + stress + stress + turbulent diffusion + dissipation = 0, 

t These conclusions are based on the assumption that the negative regions of -?and u% 
at s = 0 occurred c1osc.r to  the wall than could be measiwcd. 

6 F L M  I18 
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FIGURE 15 (a). For caption see opposite page. 

for x = 150, 175 and POOmm, where p is the fluctuating static pressure and the 
longitudinal diffusion was found to be small. As mentioned above all the turbulence 
terms except jZ and e were measured directly, the former was ignored and the latter 
found by difference. A rough check on the accuracy of the estimate for dissipation was 
made a t  a limited number of points by analysis of the spectra of u. In  the inertial 
subrange #ztu= ae8k-S, where Qllu is the one-dimensional spectral density of u, a is 
supposed to be a universal constant, taken here to be 0.50, and k is the streamwise 
wavenumber. Considering the combination of experimental error and the difficulties 
of graphical differentiation the agreement is satisfactory. I n  fact some of the discre- 
pancy can be associated with the uncertainty in the value of a ;  Townsend (1976, 
p. 99) estimates this as 6 yo. The normal-stress production was always less than 4 yo 
of the shear-stress production, with the maxima occurring close to the wall. 

For a general comparison, the results a t  x = 150mm, scaled by U‘ and ail, are 
compared with the fully developed rough-wall results of Antonia & Luxton (1971b), 
scaled on U, and 8, in figure 15 (a).  Surprisingly the present dissipation results are in 
better agreement with the equilibrium relation e = U:/K?J, although this may be 
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10 x 10-3 

5 x 1 0 - 3  
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( b )  
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FIGURE 15. (a) Turbulent-energy balance a t  2 = 150 mm scaled by U ,  and 8’; 6’ = ail for present 
results and 6‘ = 6 for Antonia & Luxton (1971b, filled symbols). 0, production; V, dissipation 
by difference; V, dissipation from spectral inertial subrange; - - - , equilibrium dissipation; 
A. advection; 0, diffusion. (6) Turbulent-energy balance at x = 150 mm, scaled by 77, and 8. 
+ , dissipation by difference; , diffusion; 0, advection. Other symbols as in (a). 

coincidence given the uncertainty in the estimates of U,, and there is a corresponding 
large difference in the production. As would be expected, advection is larger in the 
present, developing flow. Figure 15 (b )  again shows the energy balance at  x = 150 mm, 
this time scaled by U, and 6. Diffusion in a fully developed flow is always small in 
magnitude compared with the dissipation and production within the wall region, and 
any change in diffusion caused by a step change in roughness must he confined to the 
internal layer if@ is negligible. When longitudinal diffusion is small, that is when the 
thin shear layer approximation is valid (as i t  should be except very close to a step 
(Wood 1980)), it follows that 

[’” D d y  N 0, 
J o  

where D is the diffusion, if the change in diffusion caused by the change in boundary 
condition is large. The present results are generally consistent with this constraint. 
For similar reasons the large values of advection are contained within Si, a t  150 mm. 

At x = 175mm the advection and production have decreased in magnitude as the 

6-2 
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second internal layer is approached; the latter because although -uV has increased 
from 150 mm, aU/ay has decreased more rapidly. Since the measured maxima for the 
second-order quantities occur a t  175 mm the dominant contribution to the advection 
is &Va?/ay even though V is small. Within the second internal layer, aU/ax > 0, but 
i t  changes sign at y = Siz, hence by continuity both V and the advection are zero just 
outside the second internal layer. 

For y < Si, the rapid decrease in production and hence dissipation continues a t  
x = 200 mm. The advection becomes a gain and reaches nearly 30 yo of the production, 
compared with 50% in the single R - t S  results of Antonia & Luxton (1972) a t  about 
one boundary-layer thickness from their step. As mentioned above, the perturbation 
as measured by M was larger in their case. At x = 200 mm the advection is dominated 
by &Ua?/az, which changes sign just outside the second internal layer. The diffusion 
also changes sign near y = Siz, and is positive in the outer part of the second internal 
layer, compared with the negative values near Si, a t  I\: = 150mm. The behaviour of 
the diffusion is partially responsible for the slow growth of Siz in the outer layer. This 
can be shown qualitatively by noting that in the hyperbolic method of Bradshaw et al. 
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FIGURE 17. Turbulent-energy balance at z = 200 mm. Symbols as in figure 15 (b). 

(1967) ai, can be identified with the outgoing characteristic originating a t  x = 150 mm, 
y = 0. From their equations 

where V, is defined by (3.8) and the positive root is implied. The only approximation 
made in using (3.7) here is that the diffusion of turbulent energy is bulk convection by 
the large eddies. This assumption makes the Reynolds-stress transport equations 
hyperbolic. Within the wall region the right-hand side of (3.7) is dominated by 
( -  2a1=)* U ,  at least for single steps (Wood 1980) but the negative V, for y < Si, 
(figure 19) must eventually reduce the growth of Si, in the outer layer. 

Figure 18 shows the dissipation-length parameter LG 3 ( - iS)*/e, which charac- 
terizes the energy-containing eddies. Also shown is the equilibrium wall-region 
distribution L, = KY, and the distribution from Bradshaw et al. (1967) derived from 
fully developed flows. For x > 150mm the implied increase from the equilibrium 
distribution is similar to  the R-tS  measurements of Antonia & Luxton (1972). There 
is a plateau in L, outside the wall region for y < ai2, and then L6 rises until it reaches 
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FIGURE 18. Dissipation-length parameter. Symbols as in figure 9. Downward-facing arrows 
show &/a; upward-facing arrows, ail/&; --, L, = ~y and distribution from Bradshaw et al. 
(1967). 

approximately its fully developed value a t  around y = Si,. Shear-stress balances are 
also shown in the report by Andreopoulos & Wood (1980). 

It is often simpler to discuss the turbulent diffusion and transport in terms of the - 

transport velocities _ _  v, = ( p  + $&)/@ N q2vlq2 = v;, 
v, = (jE+G)/UZI N Uv2IUZI E v;. (3.9) 

We emphasize that all the terms in the approximations V i  and Vi  were measured 
directly. Vi  is shown in figure 19 with the distribution used in the calculation method of 
Bradshaw et al. (1967), scaled appropriately for x = 0. Near the outer edge of a bound- 
ary layer V, becomes constant and equal to d ( S - S * ) / d x  as a consequence of the 
turbulent-energy equation reducing to Advection + Diffusion 21 0. F'i is negative 
within the second internal layer; but as shown i t  is not zero where q2/ay is zero a t  
x = 200mm, as would be required by the gradient diffusion form q% = C@/ay, 
where C is the diffusivity. Andreopoulos & Bradshaw (1080) found that V, was also 
negative very close to the surface in their fully developed rough-wall flow, indicating 
a transport of energy from the wall region towards the roughness elements, but it is 
unlikely that this mechanism is related to the present negative Vi for x > 150mm. 
The most striking feature of figure I9 is the outward propagation o i  the 'wave' in 
V, after the roughness strip. The local maximum in Vi occurs a t  y/6 = 0.18 for 
x = 175mm and has moved out to y/S = 0.27 a t  250mm. This behaviour is related 
directly to the stress bore first noted by Smits et al. (1979) downstream of an impulse of 
convex (stabilizing) curvature. Apart from the negative regions for y < &, figure 19 
is very similar to their figure 15 (d) .  The present local maxima occur between S,, and 
Si2 near the position where & is a maximum. Near the wall V: (figure 20) is negative 
only for x > 250mm. At 250mm, V; goes through zero close to where -uV is a 
maximum. Further downstream (the results are not shown here) the maximum in 
-Kv moves slightly outward from the position where V; = 0. The ratio Vi/V; is 
generally about 3, as was found by Smits et 0.1. (1979). 
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4. Calculation of the flow 
The method used was that of Bradshaw et crl. (1967), which converts the turbulent- 

energy equation into an equation for -=. To do this, it  was assumed that a, as defined 
here is 0.30, I., has the distribution shown in figure 18, and V, has the distribution 
shown in figure 19. The calculations were started a t  x = 0 using the measured shear 
stress and mean-velocity profiles as input, and the rough surface was characterized by 
specifying zo = 0.134min for 0 < .r < 1TiOnim. Details of the small, but necessary, 
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modifications made to the program described by Bradshaw & Unsworth (1974) are 
available from the second author. 

The calculated values of CI are shown in figure 2. The largest differences from the 
Clauser-chart values on the smooth wall occur close to the end of the roughness. 
Figure 21 compares the measured and calculated mean velocity and shear stress a t  
x = 200mm; the largest discrepancies occur within the second internal layer for 
U/Ue  and around y/S = 0.2 for the shear stress. Figure 11 suggests that the measured 
a, does not depart sufficiently from 0.30 to cause serious errors, while figure 18 shows 
large deviations in L, from the assumed algebraic distribution. In principle, this defect 
can be overcome by using a transport equation for L, as was devised by Bradshaw 8; 
Unsworth (1974, 1976). Wood (1978) tested both the algebraic diy’ h t i o n  and the 
transport equation for L, in the wall region after large S -+ R and R -+ S steps. The 
difference in the calculations was not large, especially compared with the departure 
of L, from the equilibrium distribution L, = KY found by Antonia & Luxton (197 1 a, b, 
1972) after large steps. This suggests that the major discrepancy between experiment 
and calculation is due to the behaviour of the diffusion term; in fact the regions of 
disagreement in figure 21 are centred first around the position where V, goes through 
zero and then a t  the local maxima in V,. Figure 22 shows the calculated and measured 
values of yTmax the position where -uV reaches its maximum. The calculated values 
near the step are always high, showing that the discrepancies apparent in figure 21 
are general. The calculation method scales V, by the maximum value of -uV for 
y/6 > 0.25, on the grounds that this is the representative turbulence-velocity scale 
in the outer layer. This is the reason for the behaviour of yTmax after x = 350mm; 
removing the restriction on locating the scale for V, would increase the disparity 
between measured and calculated yTmax near the step. 

The calculated cf agrees very well with the Preston-tube measurements (figure 2). 
The most likely reason is that the usual logarithmic law (with AU/U, = 0) is used to 
calculate U, and U and - E a t  the first mesh point, which corresponds to a y-value of 
between 1-25 mm (small x) and 2.88 mm. 

5. General discussion and conclusions 
The most obvious feature of the results is that the boundary layer has not recovered 

from the impulse of surface roughness within the measured range of x. At the last 
station, x/S, = 55, the additive constant in the logarithmic law is 7.0 and the shear- 
stress profile does not display standard smooth-wall behaviour (figure 5). The reason 
is contained in the mechanics of the stress bore and the consequent altemtion princi- 
pally to the turbulent diffusion (figure 19). This alteration probably caused most of 
the disagreement between the calculated and measured mean velocity and shear stress 
(figure 21). The long relaxation distance is similar to that implied by simpler R+S 
experiments, and is significantly longer than that for S + R steps. This can be explained 
qualitatively by noting that after a R-t S step the outward propagation of the internal 
layer increases the shear stress towards the fully developed rough-wall distribution. 
After either a R + S step or an impulse of roughness the high level of shear stress in 
the outer layer must decay before full development is re-established. 

The present flow is not a simple superposition of a S + R step followed quickly by 
a R -+ Sstep, as evidenced by the overshoot of the second-order products a t  x = 175 mm 
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FIGURE 22. Calculated (0) and measured ( A) position of maximum shear stress. 

and by their maxima, a t  least for x = 200 mm, occurring outside the second internal 
layer. The negative V, within the second internal layer is partially responsible for the 
slow rate of growth of Si2 in the outer layer as given by (3.5) and (3.6). This negative 
region and the local maxima associated with the stress bore complicate the behaviour 
of V but the results a t  face value imply a singularity in the gradient diffusion para- 
meter q2v/aq2/ay, where is a maximum at x = 200 mm. 

Within the wall region the growth of Si2, (3.4), agrees with the approximate cor- 
relation devised by Wood (1980) for single steps. This correlation implicitly ignores 
turbulent diffusion, as do the calculations of Wood (1978), also for single steps, leaving 

Q' - - 
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the advection as the only important non-local term. In  the present results, diffusion 
reaches 30% of the magnitude of the production near the wall, and so cannot be 
ignored in an improved description of the flow. A detailed explanation of why this 
occurs and how, for example, this alters the additive constant in the logarithmic law 
must await further investigation. 
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